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Abstract: In linear systems Laplace transformation plays an important role. It 
enables us to design controllers, switch between different types of system 
representations. For those purposes we use well known transfer functions. 
Obviously, the situation is different when systems are nonlinear. The main problem, 
which makes the analysis and synthesis of such systems difficult, is an invalidity of 
basic principles employed in linear systems. Above all, it is the invalidity of the 
associativity which disables us to employ a linear theory and transfer functions. 
Nevertheless, an algebraic point of view, which presented paper introduces, enables 
to define a similar symbolic computation. From that point of view differential and 
derivative operators play a key role. In terms of the introduced symbolic 
computation the paper tries to depict a solution to a few basic control problems, 
namely a problem of modeling and a control design for nonlinear systems. 
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1. INTRODUCTION 
 
Solutions to the nonlinear problems employing linear methods have origins in the 19th 
century. The Ljapunow work on linearizing system behavior around a fixed operating point 
still represents a footstone of the present nonlinear control theory. Also the feedback 
linearization (Isidori, 1989) or the algebraic approach (Conte, et al., 1999) should be 
mentioned. 
The main problem, which makes the analysis and synthesis of nonlinear systems difficult, is 
an invalidity of some basic principles typically employed in linear systems. Mainly the 
principle of the superposition is invalid. This fact, in general, disables to use the classical 
linear-system-based approach, covering the transfer functions, for nonlinear systems. 
Presented paper tries to avoid the problem by employing differential operators. Some 
possibilities are depicted in (Halás et al., 2003). Obviously, the general solution to the 
problem will require a complex approach. This work represents an outline of the problem 
formulation and several hypothesis that should be yet pinpoint by rigorous proofs. 
The paper is organized as follows. In §2, the basic ideas of (Halás et al., 2003) are depicted. 
Preliminaries of an algebraic approach are reviewed in §3. The symbolic computation of 
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nonlinear systems is discussed in §4 and applied to a few basic control problems, namely 
modeling and control design, in §5. Finally, conclusions are summarized in §6. 
 
 
2. PRINCIPLES OF THE EXACT VELOCITY LINEARIZATION METHOD 
 
In this section the basic idea of the exact velocity linearization method (Halás et al., 2003) is 
depicted. Instead of the velocity forms the differential forms are employed. 
The question can be asked as to whether it is possible to find an approach allowing to 
introduce transfer functions of nonlinear systems which would provide both the possibility to 
use a transfer function algebra and also the possibility to characterize nonlinear dynamics. To 
answer this question let us consider two simple nonlinear systems 

( )
( )222

111

ugy
ugy

=
=

 (1) 

where 21 , gg  are nonlinear differentiable functions. The principle of the superposition is 
invalid when systems are nonlinear, as generally known. Obviously, the system ( )( )uggy 21=  
does not equal the system ( )( )uggy 12= . However, we can formally avoid this problem by 
differentiating, since a derivative of a composite function is simply a product of derivatives 
of its components. Thus on differentiating (1) 

222

111

dd
dd

uKy
uKy

=
=

 (2) 

where 111 ugK ∂∂=  and 222 ugK ∂∂= . Now, formally 
uKKy dd 21=  (3) 

for both ( )( )uggy 12=  and ( )( )uggy 21= . Of course, in the first case 12 yu = and in the second 
one 21 yu = . Evidently, the systems (1) can be described by 1K  and 2K  which we think of as 
their transfer functions. This satisfies both the validity of the algebra of transfer functions and 
also the inclusion of nonlinearities into the transfer function. 
 
 
3. PRELIMINARIES 
 
The simple idea depicted in §2 can be similarly applied also to nonlinear control systems. The 
scope of our interest is restricted to situations in which the system properties are generic and 
to the systems defined by means of analytic or also meromorphic functions. Such an approach 
is widely discussed in (Conte et al., 1999) and it considers an algebraic point of view in 
nonlinear systems. In this section some algebraic tools and methods are briefly reviewed. The 
reader is referred to (Conte et al., 1999) for detailed technical constructions which are not 
found here. 
The dynamic systems, mainly considered in this paper, are described by a system of first 
order differential equations of the form 

( )
( )uxgy

uxfx
,
,

=
=&

 (4) 

where entries of f and g are meromorphic functions, which we think of as elements of the 
quotient field of the ring of analytic functions, and nRx ∈ , mRu ∈  and pRy ∈  denote state, 
input and output to the system. Let K denote the field of meromorphic functions of x, u and a 
finite number of derivatives of u. A derivative operator δ acting on K can be defined as 
follows 
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We often use a notation uu &=δ  or ( ) uu &&=2  etc. It is important to say that derivative operator δ 
satisfies ( ) ( )FF kk δδ dd =  for any ∈F K and 0≥k . 
 
 
4. SYMBOLIC COMPUTATION FOR NONLINEAR SYSTEMS 
 
The Laplace transformation plays an important role for linear systems. It enables to design 
control algorithms, to switch from an input-output description of a linear system to a state 
space representation, etc. (Conte et al., 1999) states that such a symbolic computation is not 
available for nonlinear systems. The remarkable fact is that an algebraic point of view, 
reviewed in previous section, enables to define similar symbolic computation. This was firstly 
mentioned in (Halás et al., 2003) where, instead of an algebraic approach, the velocity form 
of nonlinear systems was used. 
 
 
4.1 State-space representation 
 
Given the system (4), let us denote by Y the space defined by Y = spanκ{dy}. It follows from 
(4) that 

uDxCy
uBxAx

ddd
ddd

+=
+=&

 (6) 

where ( )xfA ∂∂= , ( )ufB ∂∂= , ( )xgC ∂∂=  and ( )ugD ∂∂= . Then Y = spanκ{Cdx + Ddu}. 
To find a symbolic computation, which would play a similar role to the Laplace transform for 
linear systems, dx has to be expressed in terms of du. Then the relationship between the 
output and the input space would be established. This cannot be done directly from (6). 
Nevertheless, equations (6) can be, by considering ( ) ( )FF kk δδ dd = , rewritten as follows 

( )
uBxCy
uBxAI

ddd
dd

+=
=−δ

 (7) 

It follows from (7) that we can formally find ( )δF  such that ( ) uFy dd δ= . We think of ( )δF  
as an analogy of transfer functions of linear systems. 
 
Example 1. Given the following system 

1

1212

21

sin
xy

uxxxx
xx

=
+−−=

=
&

&

 (8) 

Differentiating gives 

[ ]01;
1
0

;
cos

10

112
=








=








−−−

= BB
xxx

A  (9) 

Compute the transfer function 

( ) ( )
211

2
1-

cos
1

xxx
BAICF

+++
=−=

δδ
δδ  (10) 

Note that "poles" depend on the state. In other words, coefficients of the transfer function are 
not just constants, they are meromorphic functions. That is the way how to include nonlinear 
dynamics into the transfer function. 
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4.2 Input-output description 
 
Consider a SISO nonlinear system described by a differential equations of the form 

( ) ( )( ) 0,...,,,... =uuyyF mn  (11) 
where F is a meromorphic function. We can assign to (11) a differential form 

( ) ( ) ububyaya m
m

n
n d...dd...d 00 ++=++  (12) 

where ∈F K, ( )i
i yFa ∂∂= , i = 1,…,n and ( )j

j uFb ∂∂= , j = 1,…,m. Equation (15) can be, by 
considering ( ) ( )FF kk δδ dd = , rewritten as 

( ) ( ) ubbyaa m
m

n
n d...d... 00 ++=++ δδ  (13) 

and, finally, the transfer function of (11) is given by 

( )
0

0

...
...

aa
bb

F n
n

m
m

++

++
=

δ
δ

δ  (14) 

 
Example 2. Consider the nonlinear system with dynamics 

2sin uyuyy +=+ &&&&  (15) 
After differentiating 

( ) ( ) uuyyyu

uuyuuyyyy

d2dcos

d2dddcosd
3 +=+−

++=+

&

&&&&&

δδ
 (16) 

the transfer function is given by 

( ) ( )
yu

uyBAICF
cos

2
3

1-

+−
+

=−=
δδ

δδ
&  (17) 

 
 
5. APPLICATIONS 
 
Here the defined symbolic computation is employed to depict a solution to a few basic 
control problems. Namely, a modeling and a control design. 
 
 
5.1 Modeling 
 
We are interested in switching between a state space representation and an input-output 
description of a nonlinear system. In that respect, the Laplace transformation is available for 
linear systems. The problem is analyzed in (Conte et al., 1999), where is also reflected that 
such a symbolic computation is not available for nonlinear systems. However, the defined 
transfer functions can play a similar role. 
 
Example 3. Consider again the nonlinear system (8) with the transfer function (10). The state 
x1 and x2 can be expressed as yx =1  and yx &=2 . Then 

( ) u
yyy

uFy d
cos

1dd
2 &+++

==
δδ

δ  (18) 

Now, the input-output description is obtained as 

uyyyyyyy
uyyyyyyy

dddcosdd
dddcosdd2

=+++
=+++

&&&&

&δδ  (19) 

The last expression represents a differential of the second order differential equation 
uyyyy =++ sin&&&  (20) 

Notice the similarity to linear systems and Laplace transforms. 
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5.2 Control design 
 
This section deals with the properties of the introduced transfer functions in the term of their 
algebra. Evidently, each complex system structure can be divided into three basic 
connections: series, parallel and feedback. To compute the final transfer function of that 
complex structure one has to know how to compute a transfer function of these basic 
connections.The reader is referred to (Halás et al., 2003) for constructions and proofs. 
 
Example 4. The example presented here deals with the real application. We will consider a 
fluid tank plant described by the differential equation 

xy

xcu
S

x

=

−=
1

&
 (21) 

where x denotes a level of a fluid, S denotes a tank area and c denotes a flow coefficient. The 
real system was identified with: S = 1,7.10−3, c = 4,1.10−3. (parameters are specified without 
units since they include also properties of a pump and a sensor). We can assign to the system 
a transfer function as follows 

( )

x
c

S
F

2

1

+
=

δ
δ  (22) 

The aim is to design a controller, which satisfies a linear behaviour for both a control and also 
an input disturbance. Chosen feedback structure is depicted in Fig. 1. 
 

 
 

Fig. 1. Multiloop control structure. 
 
Accordingly, the transfer functions of control and input perturbation can be computed as 

( ) ( ) ( )
( ) ( )[ ] ( )δδδ

δδ
δ

FRR
FR

Gyw
21

1

1 −+
=  (23) 

( ) ( )
( ) ( )[ ] ( )δδδ

δδ
FRR

FG
Iyv

211 −+
=  (24) 

The solutions to the set of equations (23) and (24) solved for R1(δ) and R2(δ) are 

( ) ( )
( )δ
δ

δ
Iyv

yw

G
G

R =1  (25) 

( ) ( ) ( ) ( ) ( )
( ) ( )δδ

δδδδ
δ

I

I

yv

yvyw

GF
GFGF

R
+−

=2  (26) 

Final transfer functions of controllers (19) and (20), with the control transfer function Gyw(δ) 

chosen to be 
αδ

α
−

−  and the perturbation transfer function ( )δ
IyvG  chosen to be 

( )2αδ
δ
−

, 

lead to the linear PI controller 

( )
δ

ααδ
2

1 +−=R  (27) 

and the nonlinear PD controller 
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( ) ( ) αδδ ++−=
x

ScSR
2

12  (28) 

In the case the gain 1/S of the plant (22) is set to 1 the D action of controller (28) can be 
removed. This is able to do by inserting gain K = S before system F(δ). Then, it leads to the 
nonlinear state controller 

( ) αδ +=
x

ScR
2

2  (29) 

The next step is to find differential equations concerning these transfer functions. One 
receives 

eeuR
2

1
αα +−= &&  ;  xxScuR α+=

2
 (30) 

Final control law can be written in form 
( )21 RR uuSu +=  (31) 

Real system responses (solid line) with input perturbations in times 300s, 800s, 1300s and 
1800s, and simulation results (doted line), both with the closed loop pole α chosen to be –
0.02, are presented in Fig. 2. Responses correspond well to each other. 
 

 
 

Fig. 2. Real system and model responses. 
 
 
6. CONCLUSIONS 
 
To conclude this paper it should be firstly noted that an algebraic point of view enables to 
define a symbolic computation for nonlinear systems with the possibility to design nonlinear 
controllers. The remarkable fact is that the algebra of the defined transfer functions is the 
same like in linear systems. However, it does not mean that all linear theory can be applied to 
nonlinear problems. It is important to compare presented symbolic computation to other 
techniques and methods of linear and nonlinear systems. There can be still many questions, 
for instance, on stability, controllability etc. which are, regrettably, out of scope of this paper. 
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